
Neutron scattering by rnultiblock copolymers 
of structure (A-B)  N-A 

G. Hadzi ioannou 
Chemistry Department, University of Groningen, Nijenborgh 16, 9747 AG Groningen, 
The Netherlands 

and H. Benoit*  
ICS-CRM, 6 rue Boussingault, 6700 Strasbourg, France 

and W. Tang and K. Shull 
IBM-ARC, San Jos6, CA 95120-6099, USA 

and C. C. Han 
Polymer Division, National Institute of Standards and Technology, Gaithersburg, 
MD 20899, USA 
(Received 4 July 1991; revised 18 February 1992; accepted 2 March 1992) 

Multiblock copolymers were prepared by anionic copolymerization of deuterated and classical styrene 
monomers. The use of bifunctional initiators gives copolymers with an odd number of sequences. Neutron 
scattering experiments were performed on these samples in order to check the existing theories which are 
extended in the first part to multiblock copolymers with an odd number of blocks. The agreement between 
theory and experiment is excellent and, surprisingly, the height of the maximum of the curves : scattered 
intensity versus scattering angle, does not depend on the number of blocks. 
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I N T R O D U C T I O N  

In a recent paper 1 the scattering properties of even 
multiblock copolymers of the form (A-B)N were 
calculated, based on the random-phase approximation. 
The technique is applied here to odd copolymers of the 
type (A-B)N-A and compared to experimental results. 
Experiments were performed using a model copolymer 
system consisting of alternating blocks of perdeuterated 
and normal polystyrene. This system is ideally suited for 
testing the theoretical predictions because the contrast 
factor for neutral scattering from hydrogen and 
deuterium is significant, yet the thermodynamic inter- 
action between the blocks is quite small and can be 
neglected for the block molecular weights used. Block 
copolymer mesophases are therefore not formed and the 
chain statistics is Gaussian. Symmetric block copolymers 
were synthesized via anionic polymerization using a 
difunctional initiator, a procedure that cannot be used 
to produce even (asymmetric) copolymers. Theoretical 
results for even and odd copolymers are evidently 
identical at the limit of very high N, but are different for 
low values of N. The theoretical treatment of the odd 
case is outlined in the first part of this paper, as a 
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complement to ref. 1, where the even case was developed, 
and is followed by a discussion of the experimental 
results. 

THEORETICAL 

The random-phase approximation theory allows one to 
evaluate the scattered intensity by a copolymer in bulk 
knowing the form factors of part A, PA, and part B, PB, 
as well as the cross form factor, PAB(q). It takes a simple 
form if one assumes that the system is monodisperse and 
that one has divided both parts A and B into units having 
the same volume: 

(bA -- ba) 2 (ZA "F ZB) 3 PT 
- 2Z ( 1 )  

i ( q )  ZAZ 2 PAPB _ p 2  B 

In this expression b A and ba are the coherent scattering 
lengths of the monomers of type A and B, which are 
supposed to have the same volume; i ( q )  is the scattered 
intensity per monomeric unit; Z is the interaction 
parameter between monomers of type A and B ; and z A 
and za are the numbers of monomers of type A and B 
in a molecule of copolymer. 

PA is the form factor of part A, i.e. the quantity : 

1 ~ ~ ~. exp(_ iq . rk ,  l,) ) (2) 
PA(q) = Z~ A \1=1 k=X 
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where the indices k and 1 run over part A of the 
copolymer. The quantity q is the scattering vector 
[Iql = (4~/2) sin 0/2]  and the vector ru is the vector 
joining the scattering centres k and 1. A similar definition 
can be given for part B of the copolymer. The cross term 
PAB(q) is defined as: 

pgB(q) = 1 ( ~  ~ exp(_ iq . rk , , . )  ) (3) 
ZAZB \ la = 1 kB = 1 

It represents the interference between the radiation 
scattered by monomers A and B. Finally, PT is the form 
factor of the whole polymer and one has the simple 
relation : 

(ZA + ZB)2pT(q) = Z2APA(q) + zZPa(q) + 2ZAZBPAB(q) 
(4) 

Now let us consider our block copolymer. If we call 
N + 1 the number of blocks of type A, each of them 
made of nA units, and N the number of blocks B, each 
made of n~ units, one has : 

z A = (N + 1 )n A and ZB = NnB 
This leads to the rearrangement of equation (1) in the 
form : 

(b A - bB) 2 [ (N  + 1)n A + NnB] 3 

i(q) (N + 1 ) 2..2nA~,~2..2nB 

Pv(q)  
x - 2Z (5) 

e A ( q ) e B ( q ) -  P~B(q) 
The problem now is to evaluate the three quantities 

PA, PB and PAB" If N is large they are evidently identical 
and equal to the form factor of the whole polymer as in 
a statistical copolymer. However, we are interested in the 
cases where N is small and this requires a rigorous 
calculation in the frame of the Gaussian approximation. 
This has already been done in ref. 1 and we shall briefly 
summarize the method. 

The case of PB and P A 
Let us define a point A by two indices k and p;  kp is 

the kth point on the block p. The vector rkp~, joins point 
k on block p to point 1 on block q. Assuming k < l, p < q 
and counting k from the right to the left and I from the 
left to the right (see diagram), one sees immediately that 
the number of segments d between k and I is : 

d = k + n B ( q - p -  1 ) + h A (  q - p ) +  1 
= k + I + (hA + n B ) ( q  - -  P - -  1 )  + nA (6) 

( ,> 
o~l 

/ w v ~  ~,~°tvvvv~_ _/vvvvv~,~ 
,Zip 8p Ap +1 Aq _ I 8 q  

AA-_ 

Nk__ 

Extracting from the double sum the terms for which p = q 
leads to : 

1 2 N N . ,  .. 
Pa(q)  = ~ PB(q) + N2n2 ~ ~ ~ 

p<q  kp lq 

f q2~2 } 
x e x p l - ~ - [ k  + l+ (nk+nB)(q--P-- 1)+ hA] 

(7) 

where Pa(q) is the form factor of one block B and g is the 
length of the statistical element. (This formula is obtained 
using the classical result that the Fourier transform of a 
random walk of n steps equals exp(-q2ng2/6), where 

E 2 is the statistical length of one step.) The quadruple sum 
is a simple geometrical one but some care has to be taken 
in order to obtain the correct formula for any value of N. 
We give only the final result because these calculations 
are explained in detail in ref. 1 : 

• ,1 + 2B2(q)XA[N 1-X~)2 ] 
PB(q) Iv pn(q) N 2 1 -- x (1 -- 

(8) 

Here we have introduced for simplification the quantities : 

x A = ( e x p ( - i q . r o ; , , ) )  = exp(--qEnAf2/6) (9) 

X B = (exp( - - iq . ro ; , . ) )  = exp(--qZnaf2/6 ) (10) 

and 

X = X A X  B 

The quantity XA or XB represents the phase shift going 
from one end of a block to the other: 

A(q) = ~ exp(  1 q26{2) -1-exp[-(q2(2/6)nA] (q2{2/6)nA 

(11) 

(12) 
1 - -  e x p [ -  (qZYZ/6)nB] 

B(q) = 
(q2fZ/6)nB 

The quantities A (q) and B (q) are the amplitudes scattered 
by block A or B. 

In order to obtain the value of Pa(q)  it is sufficient to 
transform A into B and to replace N by N + 1. This gives : 

1 2A2(q)xB[N + I 1--xN+' l 
PA(q) - -N+lPA(q)+(N+I)=Li - -  x ( i _ x )  23 

(13) 

The case of PAn 
The calculation of PAB(q) follows the same lines. 

Nevertheless there is one difference: it is not possible to 
assume p < q and to double the rectangular terms as done 
in equation (8). Both cases p < q and p > q should be 
considered in order to evaluate the number of segments 
between the scattering centres kp on A and lq on B. One 
finds : 

d = k + 1 + (n A + nB)(q -- P) i fp  ~< q (14) 

d=k+l+(nA+nB)(q- -p- -1)  i f p > q  (15) 

The calculation proceeds on the same lines to obtain: 

2A(q)B(q)[N+I_ 1- -xU+l  1 
PAB(q)-- N ( N + I ) L I - x -  (1 - -x~J  (16) 
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Equations (13) and (16) are very similar; they are also 
similar to the result obtained for a Gaussian chain" 

1 2 N [ q 2~2 ] 
P ( q ) = N + ~ p ~ < q ~ e x p - ~ ( q - p )  (17) 

for which the double sum is, without making any 
assumption on N" 

1 2 [ l + x  x ] 
P ( q )  = N + N 2 U 2 (1 - x s) 

1 - x  (1 - x )  2 

(18) 

where we have written x = exp ( -q2 [2 /6 ) .  It is evident 
that when N is large and x small it reduces to the classical 
Debye formula. 

Behaviour at small q values 

Expanding these expressions as a function of q gives : 

R 2 = ( N +  1)(r z + r  2 ) -  

1 
R~ = N ( r  2 + r 2) -- ~ r 2 

R2s = (N + 1)(r2 + r 2) 

1 r 2 
N + I  

(19) 

where R ] and RB z are the radii of gyration of the parts A 
and B of the copolymer and r2A and r 2 the radii of gyration 
of each of the blocks A and B. One can now evaluate the 
quantity L 2, the average value of the distance between the 
centre of masses of the parts A and B of the copolymer" 

) L 2 = 2  + N + I  

This quantity is similar to the corresponding result in the 
case of even copolymers : 

and, as expected, the difference disappears when N 
becomes large. It confirms that even and odd block 
copolymers have similar behaviours. 

The behaviour at large angles 

As can be deduced from the general laws of scattering, 
the cross term PAB(q) decreases faster than PA(q) 
and PB(q) and can be neglected when one reaches the 
intermediate range. One obtains after these simplifications: 

(b A - bB) 2 [ (N  + 1)n A + NnB] 3 PT(q) 
- ( 2 2 )  

i (q) (N + 1 x2 2 . r 2  2 ) n A l v  nB PA(q )Pa(q )  

where Pv(q) is the form factor of the whole molecule. If 
one looks at the expressions for PA(q) and Pa(q)  one 
realizes, assuming Gaussian statistics, that the two leading 
terms come from PA(q) and Ps(q),  the structure factors 
of the blocks. One thus obtains: 

Pk(q) -- N + 1 2nA(N + 1) 1 -- 

pR(q)__pB(q )  2 ( 1 ) 
S - - N 2 n a  1 - - ~ n  a (23) 

and also 

PT(q) = 2N T 1 2 

where we have used the classical expansion of the Debye 
form factor for a Gaussian chain and defined 2 as qZfZ/6. 

If one defines the following quantities : 

(N  + 1 ) n A Nnn 
u - - -  v = l - u -  (24) 

NT NT 

these quantities being the number (and volume) fractions 
of monomers A and B in the sample one obtains: 

(b A - bB) 2 1 2 + + (25) 
i (q) 2UV n A n a 

This formula is identical to the expression obtained for 
an even number of blocks and to the formula that was 
used to study the problem of transesterification 2 : it should 
be added that this result is valid even if the system is 
polydisperse. In this case one has to replace the quantities 
ha, na and N T by the corresponding number-average 
values and to remember that the definition of u and v as 
the composition of the copolymer has to be replaced by 
the composition of the sample. 

It is evident that, if one plots (b A -bB)Z / i (q )  as a 
function of q2 or J, one obtains, in the intermediate range, 
a straight line; the number of blocks in the copolymer, 
knowing its composition and its degree of polymerization, 
can be obtained directly from its intercept. Assuming the 
system to be monodisperse one has: 

n k = NTU/(N  + 1) n B = NTV/N 

Putting these values in equation (25) one obtains: 

[ )] (b A ba) 2 1 2 + + - 1 (26) 
uv i(q) - 2 uv u 

If the copolymer is symmetric one has just to suppress the 
coefficient 1/u on the right-hand side of equation (26). 
This procedure is difficult to use, for experimental reasons, 
if N is not small compared to N T. 

The position and the height o f  the max imum 
For simplicity we shall limit our discussion to the case 

where the sequences are of the same length (hA = ha), 
knowing that the results can be extended easily to the 
general case. For this purpose we have plotted the curves 
i(q) versus qr A (calling r A the radius of gyration of the 
blocks A ). It is known, in the even case, that the maximum 
is shifted slightly towards high angles and that its height 
decreases noticeably when N increases (this decrease is of 
the order of 30% when N goes from 1 to infinity). The 
situation is rather different for odd copolymers. As an 
example we show in Figure 1 the results obtained for 
i ( q ) / n A ( a -  b) 2 as a function of q for three cases: the 
copolymer A-B,  the copolymer A - B - A  and the 
copolymer (A-B)u  with N = ~ .  One sees clearly that the 
curve for the sample A - B - A  (N = 1 ) is very near to the 
curve corresponding to N = ~ .  We did not plot the curves 
corresponding to intermediate values of N;  they fill the 
interval between the odd curve N = 1 and the curve 
N = ~ making the diagram difficult to read. The fact that 
the maximum of the curves does not decrease for odd 
polymers but decreases appreciably for even polymers is, 
at first sight, surprising. Let us call Ym the height of the 
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Type Mw M w / M  n Estim. Meas. Estim. Meas. 

H-D 86 600 1.07 62 38 
H-D-H 75 000 1.11 68.9 68.1 31.1 31.9 
D - H - D - H - D  125 000 1.12 42.5 42.1 57.5 57.9 
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Table 1 

Figure 1 Scattering intensity (in arbitrary units) as a function qr (r 
being the radius of gyration of one block) for the copolymers (from 
top to bottom) A-B, A-B A and (A-B)N 

maximum of these curves. One knows that 1/y m -2Zc ,  
calling Zc the value of the Flory interaction parameter for 
which phase separation occurs. It has been shown 1 that, 
for multiblock linear copolymers, Zo depends on two 
parameters: the total number of blocks N and the 
composition u. It was shown also that, at u constant, Ym 
decreases with N. If keeping N constant, l u -- ½It increases 
then Ym decreases. In the case of even copolymers when 
one changes N one keeps u constant. This is no longer 
true for odd copolymers when all the sequences are 
identical. In this case one finds that u = 2 ! + 1/(4N + 2) 
and reaches ) only for large N. Consequently, when N 
increases the height of the peak decreases due to the 
influence of N but increases due to the effect of u. This 
explains, at least qualitatively, the results and would not 
have been observed if one had kept the composition 
constant. It is also interesting to note that the effect of 
polydispersity can be treated in this case following exactly 
the same method as for the even copolymer. 

EXPERIMENTAL 

Our aim was to verify the theory established in ref. 1 
measuring the neutron scattering by multiblock copolymers. 
The anionic polymerization technique was employed in 
order to prepare model alternating block copolymers. 
The polymerization took place in tetrahydrofuran at 
- 55°C. As a matter  of convenience, we used naphthalene 
potassium as initiator since, after the first block, we could 
add sequentially two blocks at each step of the reaction. 
This leads to copolymers with an odd number of blocks. 
Thus we modified the previous theoretical treatment 1 of 
the even copolymer ( A - B )  N to an odd one ( A - B ) N - A  
and established the corresponding rules of scattering 
behaviour as described in the first part  of this paper. We 
prepared polystyrene block copolymers with alternating 
ordinary (H)  and perdeuterated (D)  blocks. The 
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Figure 2 Experimental curves obtained for the three polymers 
described in Table 1. The abscissa corresponding to these polymers 
has been adjusted in order to use the universal quantity q[(r2) 1/2] 
where r is the radius of gyration of one block 

molecular weights and the polydispersity of the final 
copolymers and the aliquots were measured with size 
exclusion chromatography (s.e.c.) ( Table 1 ). The volume 
compositions reported in Table 1 were estimated from 
the molecular weights and measured with forward recoil 
spectrometry 3'4 which allows a measurement of the 
composition of the hydrogen and deuterium content of 
the polymer to within + 2%. The agreement between the 
estimated and measured volume composition is excellent. 

The neutron scattering experiments were performed at 
the National Institute of Standards and Technology 
(NIST)  (Gaithersburg) Small Angle Neutron Facility. 
The raw data were corrected for the instrumental and 
incoherent background. The absolute intensity measure- 
ments were made against a silica secondary standard 
specimen 5. The data, after further renormalization for 
the square of the scattering length density difference of 
the two components,  ( a o - - a H )  2, the degree of 
polymerization of each block and the number of blocks, 
are reported on Figure 2. The points on the graph 
represent the experimental data and the lines the values 
evaluated using equation (5) and the calculated values 
of the corresponding form factors, without any adjustable 
parameter.  

The agreement is remarkably good, confirming both 
the quality of the samples and the validity of the 
equations. The curves practically reach the asymptotic 
values for N = 3 so it was of no interest to report results 
for samples having more than five blocks. 
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C O N C L U S I O N  

These results confirm first that the random-phase 
approximation theory can be applied safely to multiblock 
copolymers with an even or an odd number  of sequences. 
This could have been foreseen since one can show that 
for a 50/50 block copolymer one does not need any 
approximation to obtain equation (1). Since the odd 
copolymer is not very far from symmetric and since the 
interaction coefficient between deuterated and ordinary 
polystyrene is negligible, considering the molecular 
weight of the blocks, one is in a case where the formula 
can be used safely. The only and important  point which 
has been obtained in these experiments is that the critical 
point for the appearance of mesophases does not depend 

on the number  of blocks for odd copolymers and that 
the technique of preparat ion leads to copolymers having 
really the desired structure. 
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